
Amplitude and Phase: Second Order I

The model. The Mathlet Amplitude and Phase: Second order I illus-
trates a spring/mass/dashpot system that is driven through the spring.
Suppose that y denotes the displacement of the plunger at the top of
the spring, and x(t) denotes the position of the mass, arranged so that
x = y when the spring is unstretched and uncompressed. There are
two forces acting on the mass: the spring exerts a force force given
by k(y − x) (where k is the spring constant), and the dashpot exerts
a force given by −bẋ (against the motion of the mass, with damping
coefficient b). Newton’s law gives

mẍ = k(y − x) − bẋ

or, putting the system on the left and the driving term on the right,

(1) mẍ + bẋ + kx = ky .

In this example it is natural to regard y, rather than ky, as the input
signal, and the mass position x as the system response.
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Sinusoidal input signals are fundamental. By starting the system at
a peak when t = 0 we have

y = B cos(ωt) ,

so the equation reads

mẍ + bẋ + kx = kB cos(ωt) .

The Mathlet illustrates this system with m = 1 and B = 1, but we will
carry out the analysis for general m and B.
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The solution. Putting aside the possibility of resonance, we expect a
sinusoidal solution, one of the form

x = A cos(ωt − φ)

The ratio of the amplitude of the system response to that of the input
signal, g = A/B, is called the gain of the system. We think of the
system as fixed, while the frequency ω of the input signal can be varied,
so the gain is a function of ω, g(ω). Similarly, the phase lag φ is a
function of ω. The entire story of the steady state system response to
sinusoidal input signals is encoded in those to functions of ω, the gain
and the phase lag.

There is a systematic way to work out what g and φ are. The
equation (1) is the real part of a complex-valued differential equation:

mz̈ + bż + kz = Bkest

with s = iω. The Exponential Response Formula gives the solution

zp =
Bk

p(s)
est

where

p(s) = ms2 + bs + k

(as long as p(s) 6= 0).

Our choice of input signal and system response correspond in the
complex equation to regarding Aest as the input signal and zp as the
exponential system response. The transfer function is the ratio between
the two:

W (s) =
k

p(s)
so

zp = W (s)Aest .

Now take s = iω. The complex gain is

(2) W (iω) =
k

k − mω2 + ibω
.

I claim that the polar form of the complex gain determines the gain g
and the phase lag φ as follows:

W (iω) = ge−iφ

To verify this, substitute this expression into the formula for zp—

zp = g e−iφBeiωt = gAei(ωt−φ)
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—and extract the real part, to get the sinusoidal solution to (1):

yp = gB cos(ωt − φ) .

The amplitude of the input signal, B, has been multiplied by the
gain

(3) g(ω) = |W (iω)| =
k

√

k2 + (b2 − 2mk)ω2 + m2ω4

The phase lag of the system response, relative to the input signal, is
φ = −Arg(W (iω)). Since Arg(1/z) = −Arg(z), φ is the argument of
the denominator in (2). The tangent of the argument of a complex
number is the ratio of the imaginary part by the real part, so

tan φ =
bω

k − mω2

It’s not quite correct to write φ = arctan

(

bω

k − mω2

)

, since the arctan

is chosen as the angle between −π/2 and +π/2 with given tangent,
while the phase lag varies between 0 and π.

Questions. 1. It appears from the Mathlet that often, but not always,
there is a nonzero frequency for which the gain is maximal. This is the
“resonant frequency” ωr. Compute this frequency, as a function of the
system parameters. Explain why for some values of the parameters the
only local maximum of gain is at ω = 0.

2. At what frequency is the phase lag exactly 90◦?

3. For all values of b and k, as ω gets large it appears that A → 0. Is
this right? Can you be more precise about how? That is, for ω very
large, can you approximate A by a simpler expression that what we
derived above?—maybe just a (negative) power of ω?

4. For all values of b and k, as ω gets large it appears that φ → π. Is
this right?

5. How about the behavior of g and φ for small values of ω? Clearly
g(0) = 1 and φ(0) = 0, so linear approximation gives

g(ω) ' 1 + aω , φ(ω) ' bω

for small ω. The Mathlet gives some indication of the values of a and
b. What are they in fact? Does the Mathlet bear out your calculation?


