
Linear Phase Portraits: Matrix Entry

Problem 1 [Linear system; the companion matrix]

(a) We’ll work with the two homogeneous constant coefficient linear equations ẍ +
3ẋ + 2x = 0 and ẍ + 2ẋ + 4x = 0. For each, find two independent real solutions,
(please use either exponentials or functions of the form ert cos(ωt) or ert sin(ωt), and
denote them by x1(t) and x2(t)), write down the general real solution, and determine
the damping characteristic. Also compute ẋ1 and ẋ2.

(b) Now write down the companion matrix for each of these two equations. This
means: set y = ẋ and then solve for ẏ in terms of x and y, to get a system of two
linear equations, of the form = A, where = xy and A = abcd. In a companion matrix
a = 0 and b = 1.

(c) Open the Mathlet Linear Phase Portraits: Matrix Entry. Select “Compan-
ion Matrix,” and set the c and d values to the entries of the companion matrix for
the first equation. (Note that clicking on a hashmark on a slider sets the value.)

For a companion matrix A = 01cd, the colorful window at the upper left shows (d,−c).
For the meaning of this in terms of the damping conditions of the second order
equation, see the notes to Lecture 13.

The big window shows the “phase plane” of the system. It displays the trajectories
of a few solutions. Click on the window to produce more. You can clear them all
using [Clear], and return to the original set of trajectories by re-setting one of the
c or d sliders. Do this; return to the originally displayed selection of trajectories.

Since y = ẋ, a solution to = A is given by x(t)ẋ(t) where x(t) is a solution of
ẍ + 3ẋ + 2x = 0 (in this first case). Draw a picture of the phase plane. Each of these
trajectory curves should have an arrow on it indicating the direction of time: please
indicate this on your picture. Identify which of the trajectories correspond to each
of the basic solutions you found in (a). (These will be among the originally chosen
trajectories.)

(d) There is a hook-shaped trajectory in the upper half plane. The picture doesn’t
show a scale; but suppose that it crosses the y axis at (0, 1). What is the solution
having this as its trajectory assuming that this crossing occurs at t = 0?

(e) Write down another solution having the same trajectory. (There are infinitely
many!)

(f) Now set the c and d sliders to the values relevant to the second equation you solved
in (a). Sketch the phase portrait (and include the arrows indicating the direction of
time). The picture doesn’t show a scale; but suppose that one of the shown trajec-
tories crosses the y axis at (0, 1). What is the solution having this as its trajectory
assuming that this crossing occurs at t = 0. At what times does this solution cross
the y axis in the future? Sketch, roughly, the graphs of x(t) and of y(t).

Problem 2 [Eigenvalues, eigenvectors]

(a) Find the eigenvalues and eigenvectors of the companion matrix for ẍ+3ẋ+2x = 0.
On the x, y plane draw the eigenlines. For each of the two eigenlines, write down a



solution which moves along it. Compare this with the work you did in 31., especially
in part (c).

(b) Write down the companion matrix for the equation ẍ + 2ẋ − 2x = 0. Find the
eigenvalues and eigenvectors for this matrix, and sketch the eigenlines.

Now, invoke Linear Phase Portraits: Matrix Entry, set c and d to display the
phase plane for this companion matrix, and sketch the phase plane that it displays.
Include arrows indicating the direction of time.

For each of the eigenlines, write down a solution that moves along it.

Problem 3 [Qualitative behavior of linear system]

Invoke the Mathlet Linear Phase Portraits: Matrix Entry. Play with the tool
for a while to get a feel of it. Notice that the eigenvalues can be displayed on the
complex plane. Deselect the [Companion Matrix option, so you can set all four
entries in the matrix. Select the [eigenvalues] option, so the eigenvalues become
visible by means of a plot of their location in the complex plane and also a read-out
of their values.

We will use this tool to investigate the phase portraits of the homogeneous linear
equation = A, where A = 13− 1d, as d varies. To start with, set the matrix to
A = 13− 1− 4. Then move the d slider up to d = 4, and watch (1) the movement of
the mark on the (Tr,Det) plane; (2) the movement of the eigenvalues in the complex
plane; and (3) the variation of the vector field.

(a) Compute the trace and determinant of A. (They will depend upon a, of course.)
Find an equation for the curve (or line) traced out by the mark on the (Tr,Det) plane.

(b) You notice that the curve in the (Tr,Det) plane enters a number of different
regions. When the cursor crosses a red boundary, the trajectories and the eigenvalue
indicators turn red. Work out what the values of d are at those crossings. (So this is:
where det A = 0, where det A = (A/2)2 (twice, once not represented on the Mathlet),
and where A = 0.

(c) There are nine phase portrait types represented as d varies (five regions and four
walls). Draw an interval from −4 to +5. On it, mark the four values of d at which the
matrix crosses one of the walls. Indicate the type of phase portrait you have at each of
the marked points and along the intervals between them. That is, classify the phase
portrait into one of the following types, as in the Supplementary Notes, §25: spiral
(stable/unstable, clockwise/counterclockwise), node (stable/unstable); saddle; center
(clockwise/counterclockwise); star (stable/unstable); defective node (stable/unstable;
clockwise/counterclockwise); degenerate (comb (stable/unstable), constant, parallel
lines).

(d) For each of the four special values, and for your choice of one value in each of
the five regons, make a sketch of the phase portrait. Be sure to include and mark as
such any eigenlines, and the direction of time.

(e) Letting T = tr(A) and D = det(A),

Give the equation of the parabolic red line in the picture;

For the left-hand yellow and green religions, and the blue region below, show



algebraically that the behavior of the eigenvalues of A above implies the location of
the corresponding point (T, D).

(f) There are spirals and spirals-some are “loose”, going around many times as they
approach the origin; others are “tight”, with all the spiralling done so close to the
origin that one would need a huge zoom-in magnification to see it. By experimenting
with different points in the “spiral sink” region of the TD- screen. Determine the
connection between the complex eigenvalue λ = r + si and the tightness of the spiral
and explain it in a few words mathematically.

(g) In a node or a saddle picture, the eigenvectors will lie along the two straight
line trajectories going through the origin. By experimenting with the figlet in the
node and saddle pictures, guess what the form of the matrix A should be if the
perpendicular vectors~i±~j are both eigenvectors. Prove using algebra that your form
for the matrix A is correct.

Problem 4

Let c be a real constant. This problem will analyze the system

x′ = y

y′ = cx− 2y

(a) What is the characteristic polynomial of A the coefficient matrix for the system?

(b) Compute its eigenvalues and eigenvectors. The answer depends on c so you will
need to break your answer into cases.

(c) Write down the general solution to the equation. Again you will need to break
into cases depending on c.

(d) Open the visual Linear Phase Portraits: Matrix Entry and click on the eigenvalues
button. Using representative values of c give sketches of all the different types of phase
portraits possible as c varies. Using your answer in part (c) explain the portrait when
c = −3.


