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The d�Arbeloff Interactive Mathematics Project or d�AIMP is an initiative that seeks to en-
hance and ultimately transform the teaching and learning of introductory mathematics at the

Massachusetts Institute of Technology. A result of this project is a suite of ‘‘mathlets,’’ a
carefully developed set of dynamic computer applets for use in the university�s ordinary
differential equations course. In this paper, we present the rationale for such computer

innovations, the philosophy behind their design, as well as a discussion of their careful
development and implementation. Survey results are reported which yielded positive student
feedback and suggestions for improvement.
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INTRODUCTION

At the opening of the current millennium, the
Massachusetts Institute of Technology experienced a
very exciting cycle of educational renewal and
experimentation. The d�Arbeloff Interactive Mathe-
matics Project, d�AIMP, created a score of computer
‘‘manipulatives’’ or ‘‘mathlets,’’ small, self-contained,
single-purpose dynamic learning environments, for
use specifically in the principal undergraduate differ-
ential equations course. These learning objects are
now rendered in Java and are freely available on the
Web at <http://www-math.mit.edu/daimp>.

In this paper we present the rationale for such
computer-based innovations, the philosophy behind
their design, and a discussion of their development,
implementation, and assessment.

The section ‘‘Institutional Background: Three
Dilemmas’’ describes the historical background for
this work, reviewing the specific conditions at MIT in
which it was conceived and carried out. These insti-
tutional conditions pose a series of challenges to the
teaching of basic mathematics, which are formulated
as three dilemmas.

The section ‘‘Intellectual Background: The Case
for Mathlets’’ discusses the intellectual background
for this work: modes of feedback, modes of transfer,
modes of instructional support, and a review of
similar work. This section seeks to provide a review
of the current state of the literature and courseware
development rather than paint a picture of what was
known, or known to us, when the project began. The
section ends with a summary of the design consider-
ations informing the creation of these mathlets, and a
description of previous work that ours builds on.

The section ‘‘Design Considerations and Three
Examples’’ provides examples of three of the math-
lets, chosen to show how they address our three
dilemmas. The section ‘‘Design Cycle and Assess-
ment’’ discusses the design cycle and describes our
assessment methods and results. A ‘‘Conclusion’’
briefly summarizes our findings, and assembles some
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general principles we have learned about the use of
technology in education.

INSTITUTIONAL BACKGROUND: THREE

DILEMMAS

Since its inception in 1861, MIT has espoused
the principle that technical education should be based
on broad scientific and mathematical principles. The
connected and dynamic character of the MIT
undergraduate program results in part from this
overall policy decision. Students are accepted by MIT
as a whole rather than by an individual school or
department, and the faculty as a whole share
responsibility for their education. A specified list of
science and mathematics courses (consisting of two
semesters of calculus, two semesters of physics, and
one semester each of chemistry and biology) is re-
quired of all undergraduates. In addition, students
are required to take two restricted electives in science
and technology (RESTs). Approximately 80% of
each class elects to take Differential Equations, 18.03,
as a REST. This course is required as part of the
major by most departmental programs, and there has
been an increase in the number of life science and
social science majors taking the course even though it
is not required by those majors.

This policy choice, which has been emulated by
many technologically oriented universities across the
country, confronts the providers of basic science and
mathematics courses with a complex challenge. They
are charged with conveying fundamental principles of
science and mathematics to freshmen (and sopho-
mores, to a lesser extent) who come from widely
diverse backgrounds and have widely diverse educa-
tional goals. These students are eager take courses in
the field they came to study, or to experiment with
courses in subjects not represented in high school.
Many students have a central interest in mathematics
or physics per se, but two thirds of MIT undergrad-
uates pursue an engineering degree. Typically they
take their first engineering course in their third
semester. At the same time, the science and mathe-
matics ‘‘service courses’’ tend to be less well funded
by the institution than do disciplinary courses, and
host departments respond by teaching them in large
lectures accompanied by recitations.1

The core science courses, furthermore, have a
dual obligation. They are expected to provide stu-
dents with an understanding of the modes of analysis
characteristic to the subject of study, as part of the
students� preparation as engaged and technologically
informed citizens, while also preparing students with
skills and knowledge which will be called upon in
later disciplinary work. In a school like MIT, one
which is ‘‘polarized around science’’ (Killian, 1949),
this second task is of particular concern in mathe-
matics.

We formulate the challenges resulting from these
institutional conditions as three dilemmas.

Facilitation of Transfer. This institutional back-
ground presents a challenge to those teaching basic
mathematics, and in particular differential equations:
how can the operations and content of differential
equations be brought to life in a way that has clear
connections with downstream courses while preserv-
ing the desirable generality of the mathematics? The
importance of this task is reflected in the perceptions
by engineering faculty that their students are not well
prepared (Miller and Upton, 2002; Willcox and
Bounova, 2004). It is further confirmed by students
who claim that they have forgotten underlying prin-
ciples that were taught in their freshman year or that
they never actually understood the ideas when first
presented (Nasr et al., 2003; Upton, 2001). However,
despite much anecdote, there are surprisingly few
quantitative studies of transfer of mathematical skills
and understanding into engineering contexts in the
literature.

Examples versus Theory. In teaching mathemat-
ics, especially to students who do not intend to pursue
mathematics professionally, one is continually faced
with another dilemma. Simply stated, one must either
present a general case with symbols or present an
example with numbers. Both extremes are deficient.
The general theory is at the start meaningless to the
student, while on the other hand any example gen-
eralizes in diverse ways and so is confusing to the
student. Good teachers rely on their experience to
visualize the range of specializations and thus bring
the theory down to earth. At the same time, teachers
need to give significance to the examples by under-
standing what in the example is essential and what is
not. These understandings are difficult and time-
consuming to convey using static media such as
chalk, slides, or pages of a textbook.

Algorithm versus Concept. Another well-known
weakness of standard mathematics courseware, espe-
cially in engineering oriented differential equations

1The MIT Physics Department has moved to a Studio Physics

delivery system for much of their core science teaching. This ap-

proach still puts around 100 students in the classroom.
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courses, is that it tends to be based on algebraic
manipulation of symbols. To the teacher, these
symbols carry significance, even graphical signifi-
cance, but students have no way of making that con-
nection. Typically symbolic expressions lend
themselves to procedural operations, while graphical
representations link more easily with conceptual
understanding.

INTELLECTUAL BACKGROUND: THE CASE

FOR MATHLETS

This section reviews the current state of the
educational theories that underlay the creation of the
d�AIMP mathlets and summarizes the design con-
siderations informing the creation of the mathlets.
We end with a listing of the specific design consid-
erations we were led to.

Modes of feedback. In Rethinking University
Teaching (2002), Laurillard considers a variety of
distinct media used in teaching. Among other forms
she discusses adaptive media, which she defines as
‘‘the computer-based media capable of changing their
state in response to the user�s actions’’ (p. 126). Under
this heading, she defines a simulation as ‘‘a program
that embodies some model of an aspect of the world,
allows the user to make inputs to the model, runs the
model, and displays the results.’’ A further classifi-
cation, due to Allessi and Trollip (2001), locates the
mathlets as iterative simulations, which (as described
by Lipson (2006), p. 2) ‘‘allow learners to select dif-
ferent parameters to permit observation of the phe-
nomena [being studied] under different conditions.’’

Laurillard stresses that ‘‘action without feedback
is completely unproductive for a learner’’ (p. 55).
‘‘Feedback is critical to the learning process, as every
theory of learning acknowledges, from behaviourist
to social constructivist…. Feedback on students�
action is the weakest link in the traditional educa-
tional process’’ (p. 126). She is consequently inter-
ested in the potential of media to effect feedback to
the student.

She distinguishes between two types of feedback:
intrinsic and extrinsic. Intrinsic feedback is a response
to an action that is inherent in the system in which the
action took place. Extrinsic feedback is a response to
an action from outside the system. Praise, encour-
agement, and warnings, may all be useful forms of
feedback in an educational context, but they are
extrinsic to the subject the learner is grappling with,
and, to that extent, they distract the attention of the
learner from his or her primary task. Intrinsic feed-

back informs the learner of a property of the system
under consideration, and represents the most direct
way this information can be conveyed. As Laurillard
says, ‘‘The informational content of intrinsic feed-
back is extremely valuable to the learner.… It is
individualized, private, formative feedback, which
helps to build their understanding of the internal
relations between theory and practice’’ (p. 127).

Laurillard contends that ‘‘The ability to offer
intrinsic feedback is unique to the computer, and
forms the core of any understanding of the contri-
bution that ICT [Information and Communications
Technology] can make in education…’’ (p. 126).

Modes of transfer. Since facilitation of transfer is
one of the primary objectives of this work, it is
worthwhile considering what is meant by ‘‘transfer.’’
Bransford and Schwartz (1999) provide a useful cri-
tique of research on transfer that tends to ‘‘produce
assessments that make people ‘‘look dumb’’’’ (Sch-
wartz et al., 2005). They distinguish between two types
of transfer assessment. The first tests proficiency at
what they call SPS, Sequestered Problem Solving; this
is the common approach, employed for example by
Adamczyk et al. (2002). A deeper understanding of
the meaning of transfer leads to assessments of how
well it succeeds as Preparation for Future Learning, or
PFL. Such assessments will measure the ease of
learning in new contexts with or without the experi-
ence from which transfer is being studied.

Schwartz et al. (2005) continue this analysis by
pointing out that when viewed as PFL, transfer has at
least a two-dimensional space of attributes: ‘‘effi-
ciency’’ and ‘‘innovation.’’ Assessments of transfer
success typically measure only the efficiency coordi-
nate and make no attempt to evaluate the improve-
ment of the ability of the learner to come up with
appropriate questions or plans of action. These au-
thors comment that in fact ‘‘Experimental studies
show that [high] efficiency can often produce �func-
tionally fixed� behaviors’’ (p. 29) and so is of ques-
tionable value. They envision the learning process as
moving along a trajectory within this space, and
identify an ‘‘optimal adaptability corridor’’ in which
the two aspects of transfer are in approximate bal-
ance. They recognize that some learners� trajectories
form curved arcs on one side or the other of the
diagonal.

These considerations contribute to our view that
transfer, properly interpreted, is enhanced by pro-
viding students with conceptual hooks as well as
experience with re-usable algorithms. The advantages
of an appropriate level of abstraction in establishing
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flexible transfer are well articulated in the classic
National Research Council study edited by Bransford
et al. (1999).

Modes of instructional support. Lipson (2006)
provides a convenient typology of instructional
environments, with reference to their use in sup-
porting learning with simulations. ‘‘… instructional
supports can be classified into three types: (1) direc-
ted—they tell the learner what to do by providing
assignments; (2) guided—they provide a little direc-
tion by pointing out some relevant aspects to exam-
ine; and (3) inquiry-based—they ask questions, rather
than providing any direction.’’ (p. 6). Assignments
provide an example of a directed support; ‘‘Assign-
ments are small exercises that can help students
identify the important variables in the simulation,
develop hypotheses, and interpret the results’’ (p. 6).
Model progressions exemplify guided supports; these
‘‘structure the simulation so students do not deal with
the simulation in its full complexity initially. Learners
are initially given a simplified version of the model
and are introduced to more complex versions in a
series of stages.’’ (p. 6). Inquiry-based support leads
to a form of �discovery learning.�

Lipson reports on a substantial body of research
indicating that in general inquiry-based support of
simulations does not work well unless it is provided in
a group setting. Mayer (2004) makes the same point
more strongly. A balanced approach, with carefully
specified sequenced objectives—a model progression
broken down into connected assignments—often
showed best results.

Review of similar work. The d�AIMP mathlets
were based on an earlier suite of programs, Interac-
tive Differential Equations <http://www.aw-bc.com/
de>, authored by Beverly West, Steven Strogatz,
Jean Marie McGill and John Cantwell, and designed
by Hubert Hohn. These programs were discussed by
McDill et al., (1997). An accompanying paper
workbook provided instructional support (West
et al., 1997). The d�AIMP project allowed us to bring
this prior work up to a contemporary standard of
performance, bring it into better accord with our
curricular choices at MIT, add many new tools to the
kit, and increase interactivity.

Another project close in spirit to the d�AIMP
work is MathinSite (http://mathinsite.bmth.ac.uk/in-
dex.html). Developed mainly by Peter Edwards at
Bournemouth University, UK, MathinSite consists in
a collection of two dozen narrowly focused simula-
tions (like ours, rendered first in Basic and later ported
to Java). Some are accompanied by a ‘‘Theory Sheet’’

describing the underlying mathematics, or by a
‘‘Work Sheet,’’ containing a model progression lead-
ing through the functionality of the applet to illustrate
the mathematical points it captures. Typically there
are cursor-controlled parameters, numerical readouts,
and color coding. There is often a menu of function-
ality options, so each tool tends to be more multi-
purpose than ours are. The skin is closer to Java
standard than ours. One interesting and striking de-
sign decision was to make the principal graphing
window a moveable sheet of quadrille paper. This
allows various parameters to achieve a wider range of
values than we can accommodate, and gives the tools
a pleasingly open look with an engineering feel to
them. This work has been frequently reported on; see
for example Edwards and Edwards (2003).

Beyond these, there is an explosion of web-based
mathematical visualization aids of all sorts. Many are
collected in peer-reviewed archives, such as the
Mathematical Association of America�s Mathemati-
cal Sciences Digital Library, MathDL <http://
mathdl.maa.org/>, which houses the JOMA Mathlet
collection and provides standards and protocols for
the production of applets in their Mathlet Develop-
ers� Area. MERLOT, the Multimedia Educational
Resource for Learning and Online Teaching <http://
www.merlot.org/Home.po>, provides a similar
environment for higher education in general. The
National Science Digital Library�s Educational Re-
sources for Science & Mathematics, iLumina
<http://www.ilumina-dlib.org/> is another archive
focusing on science. While the work found in these
archives is often of excellent quality, none of it shares
the goals of our work as closely as MathinSite, and
we will not review it in more detail.

DESIGN CONSIDERATIONS AND THREE

EXAMPLES

The mathlets were built with the following design
features in mind:

(1) Each mathlet addresses a precisely targeted con-
cept, minimizing the complexity of the tool and
maximizing the specificity of the illustration. A
selection of parameter values is carefully chosen
to maximize the clarity of important features.
When bundled together, the suite of applets of-
fer the advantages of a more general tool with-
out sacrificing precision and ease of use.

(2) In each mathlet, information is represented in
a variety of ways—pictorially, graphically,
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numerically, and symbolically. The different
views and their connections allow for more
questions and thus offer a more robust under-
standing of the target concept. Positioning and
color-coding reinforce the relations between
these various representations.

(3) Each mathlet is a manipulative rather than an
animation. Each incorporates a high degree of
interactivity that is meaningful for learning and
can aid in retention. Many web pages offer but-
tons to click but have no engaging, challenging
content with which to interact. With these tools,
the user must select parameter values, by cursor
movement on a window, setting sliders, or click-
ing on radio buttons, and can make measure-
ments of objects in graphing windows. The
representations are linked in real time so that a
change in one produces corresponding real-time
changes in all the others.

(4) Information is often displayed in a progressive
manner, controlled by toggles.

(5) The technology is easy to use. Unlike computer
algebra packages and graphing calculators, stu-
dents learn to use them very quickly, minimizing
time deflected away from the essential mathe-
matics content. Further, the various mathlets
share a common set of conventions.

(6) The mathematics underlying each mathlet is
scrupulously correct. This is essential because
the applets are designed not merely to give a va-
gue visual correlate to the ‘‘important’’ alge-
braic manipulations, but, also, and more
powerfully, to provide experimental data which
the student may measure and compare with the
theory.

(7) ‘‘Help’’ pages specify the various functionalities
of each tool.

Each of the following examples of the d�AIMP
mathlets illustrates our solution to each of the three
dilemmas outlined above.

Facilitation of Transfer: Amplitude and Phase.
The mathlet ‘‘Amplitude and Phase: Second Order’’2

deals with a standard simple mechanism—a mass
driven by a piston attached to a spring and damped
by a dashpot. The motion of the mass is described by
a second order linear-time invariant (LTI) equation.
This tool considers a standard sinusoidal forcing
motion. It allows the student to vary the spring

constant, the damping constant, and the input fre-
quency. The mechanical system itself is displayed,
along with a graph of the motion of the piston and of
the mass. Lines on the graphing window indicate the
time lag, and readouts give the values of the period
and time lag. Position variables are displayed when
the cursor is rolled over the graphing window. A
button animates the whole system, and the motion
along the graphed solution is indicated. A toggle
activates a second set of windows, showing the
amplitude and phase response and the complex fre-
quency response. As the various system parameters
are adjusted, the whole configuration adapts to the
current values (See Figure 1).

Figure 1 represents a screen capture of a state of
this mathlet. When it is first opened, the three win-
dows at the right and the two equations below them
are absent: much less information is displayed. In
getting to the displayed state, the user has set values
of the spring constant k, the damping constant b, and
the circular frequency x of the plunger motion;
clicked the [>>] key to animate the spring; and
having understood how the position of the plunger
and of the mass are represented by graphs in the
central window—assisted by the color coding—var-
ied the circular frequency through a range of values,
and observed the resulting variation in these graphs.
Finally, the user has clicked the [Bode and Nyquist
Plots] key to reveal the right hand column. Now the
user can see graphically how the salient characteris-
tics of the solution—its amplitude and its phase
lag—vary with x, and that these two parameters are
captured as the magnitude and argument of a certain
complex number which varies with x as show in the
bottom left window.

These graphical elements carry complete infor-
mation about the periodic system response, and form
the core of a large fragment of later engineering
coursework. They also represent faithfully the man-
ner of solution taught in the mathematics course.
This tool is re-used in down-stream engineering
courses, building a visual and conceptual bridge to
the prior mathematics course. It allows the upstream
mathematics course to touch on parts of the sub-
ject—frequency response—which are often regarded
as too sophisticated for this level of student because
they seem mysterious when expressed in formulas.
The tool reinforces the lesson that sinusoidal motion
is determined by a very few parameters—frequency,
amplitude, and phase. This allows the student to view
the periodic solution as an object, which can be
controlled by the parameters of the system. This

2This mathlet and the Linear Phase Portrait mathlet build on

earlier IDE tools (Interactive Differential Equations, 1997).

Computer Manipulatives in an Ordinary Differential Equations Course



conceptual step, from viewing a function as a rule
(understood by means of evaluations) to an object
(understood by means of determining parameters) is
a fundamental learning objective in a differential
equations course.

Example versus Theory: Linear Phase Portraits.
The d�AIMP mathlets ‘‘Linear Phase Portraits: Cur-
sor Entry’’ and ‘‘Linear Phase Portraits: Matrix En-
try’’ illustrate a solution to the dilemma of choosing
between presenting general and special cases. These
applets allow investigation of the variation of solu-
tion trajectories as the parameters are changed in a
homogeneous system of first order linear differential
equations. The textbook story is that in most cases
the trace and determinant determine the essential
characteristics of the phase portrait. In traditional
accounts, one does a few examples each of which
seems isolated, and students have no way of knowing
how the image morphs from one example to another.
With this tool one can control the trace and deter-
minant using either sliders or cursor movement over
the trace-determinant plane. The critical parabola
separating distinct behaviors is unmistakable. A large
graphing window displays a few trajectories. Differ-
ent areas of the trace-determinant plane are colored
differently, and representative trajectories are drawn

in the same color. Additional trajectories can be
produced by clicking on the graphing plane. Within a
given trace-determinant class there are still two de-
grees of freedom. In the cursor entry Mathlet, this
variation can be controlled by cursor movement or
slider adjustment in a different window. This allows
excellent visualization of the diversity of shapes
within a given class. In the matrix entry tool, a toggle
allows a choice between selecting the companion
matrix with the given trace and determinant—in
which case the matrix is chosen by setting the trace
and determinant—or, alternatively, controlling the
matrix by directly altering the matrix entries. Another
toggle opens or closes a window displaying the ei-
genvalues of the matrix along with a read-out of their
values (See Figure 2).

In homework use of the Matrix Entry tool, we
typically ask the student to set fix three of the four
entries in the matrix at specified values, and then vary
the fourth. The trace-determinant pair moves along a
straight line passing through several regions, corre-
sponding to different phase portrait types. The stu-
dent observes the deformation of the trajectories and
can understand how a spiral degenerates to a defec-
tive node and re-emerges as a proper node. The
critical values of the varying matrix entry are then

Fig. 1. Amplitude and phase, second order.
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requested; the student is asked to name the various
phase portrait types and sketch representative
examples of them.

Algorithm versus Concept: Fourier Coefficients.
Our solution here is to require students to carry out
experiments using the graphics, measuring parame-
ters and correlating their measurements with the
theory. Although this works very well with the
Amplitude and Phase mathlet, we choose to discuss
‘‘Fourier Coefficients.’’ In this applet, a column of
sliders allows the user to set the values of Fourier
coefficients. The resulting finite Fourier sum is
graphed. When the user moves a slider, a represen-
tation of the corresponding sinusoid is also shown,
developing an intuition, which is usually missing in
students at this level, about adding functions. Further
buttons display a target function, which the user at-
tempts to approximate by choice of Fourier coeffi-
cients. Radio buttons show or hide formulas for the
Fourier sum and the root mean square distance be-
tween the target and its Fourier approximation (See
Figure 3).

This mathlet aims at instilling a conceptual
understanding of Fourier coefficients—the coeffi-
cients that result in optimal approximations as op-
posed to the standard procedural definition of certain
integrals. The student can discover the values of the

coefficients by this graphical approach and then
verify this discovery analytically using a computa-
tional algorithm. The mathlet also illustrates con-
cepts, such as orthogonality, which go somewhat
beyond what one can teach at this level, and thereby
offers the opportunity to enhance transfer by refer-
ence to a familiar visual context.

DESIGN CYCLE AND ASSESSMENT

The early development phase. Work on creating
these manipulatives began in Fall 2000. They were
initially written in True Basic. In February 2002 they
were used in homework and for classroom demon-
strations in a large differential equations class. They
were presented as executables and the students had to
use them in on-campus computer clusters. In Fall
2002 the second author joined the team and began an
intensive formative assessment of the manipulatives
as they existed at the time. This resulted in numerous
improvements that were incorporated in time for use
in homework assignments in Spring 2003. An exten-
sive survey and interview study was conducted with
students to learn about the way in which they used
the manipulatives in that class. These data led to a
better understanding of how students responded to
this pedagogical medium. The manipulatives have

Fig. 2. Linear phase portraits, Matrix entry.
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been a staple in this course since then. In Spring 2002
a programmer began porting the code to Java, with a
second programmer completing the project by Fall
2005.

During the development and implementation
phases of the project, a close collaboration was
achieved between teacher, software designer, pro-
grammer, and assessment expert. This added greatly
to the efficiency of the product and enjoyment of the
process. Involving the students at an early stage in
usability testing was critical as well.

Initial Usability Testing. The initial stages of the
evaluation began with usability testing of the math-
lets. The sample for this testing consisted of eight
students from an introductory ordinary differential
equations course, four men and four women, with
differing levels of mathematical ability. None of the
participants had any prior exposure to the Mathlets.
Each participant was required to meet with the re-
searcher for about an hour every other week during
the semester. At each meeting, the participant was
provided with a computer that gave him or her access
to a specified applet, and a script to guide the student
through its use. Each script consisted of a sequence of
questions asking the student to describe what he or
she observed, how the screen images changed in
response to specified actions such as moving a slider,
and what the various images on the screen repre-

sented mathematically. It also contained fragments of
assignment sequences, testing reactions to various
possible homework usages. The researcher read the
script aloud and each participant was asked to think
aloud as he or she followed the given instructions.
The computer screen was videotaped and the verbal
exchange was recorded as the participants worked,
and this record was later analyzed. Based on obser-
vation of these results, improvements were made to
the manipulatives and their scripts and the testing
cycle was repeated.

The usability testing amounted to a formative
assessment of the applets before their full imple-
mentation. Bugs in the programs were discovered
and rectified, and obscurities were clarified. Some of
the mathlets were found to present too much
information on the screen at one time for students
to absorb comfortably. In response, these mathlets
were revised so parts of the display were hidden at
first, requiring the user to invoke them by pressing a
toggle. The student�s thinking process was followed
as it led him or her to use the applet to achieve a
richer understanding of the mathematics. Students
who habitually relied on only algebraic under-
standing became less reluctant to use geometric
means by using the manipulatives. We also learned
how to ask the students to interpret various graph-
ical elements in the mathlets, as a way of leading

Fig. 3. Fourier coefficients.
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them to think about the graphical meaning of the
mathematics.

Later Usability Testing and Assessment. With
improvements made and a better understanding
of the behavior and thinking processes of the
students achieved, the applets were introduced into
an introductory Differential Equations course.
Homework assignments, which can be found on the
project�s website, (http://www-math.mit.edu/daimp),
included investigations with the following sequence
of mathlets—Phase Lines, Complex Roots, Ampli-
tude and Phase: First Order, Damped Vibrations,
Amplitude and Phase: Second Order, Beats, Fourier
Coefficients, Convolution: Accumulation, Convolu-
tion: Flip and Drag, and Linear Phase Portraits:
Cursor Entry. (During this time, many of the applets
were identified by other names. The names of the
currently available variants of these prototypes are
being used for convenience.) A representative sample
of 60 students was administered web-based surveys to
complete after the use of each manipulative. The
surveys provided both quantitative and qualitative
information about how students learned to use visu-
als, how visuals contributed to their understanding of
the material, how they contributed to students�
enjoyment, and ways in which these tools can be
successfully used in problem sets.

Survey findings. Each survey asked the partici-
pants to rate the overall ease of learning to use the
mathlet. For the first five tools, the participants were
asked to give a whole number rating on a scale from 1
to 5, with 1 being ‘‘very hard’’ and 5 being ‘‘very
easy.’’ For the next five tools, a 1 to 7 scale was used,
with 1 being ‘‘very hard’’ and 7 being ‘‘very easy.’’
This change was made in an effort to allow for more

variability as well as correspond to the rating system
students were already familiar with from university
course evaluations. Fifty-nine, 55, 55, 56, 56, 54, 52,
47, 47 and 46 responses were received for the tools
listed above respectively. Table 1 shows the break-
down of these responses in terms of the quantity of
each whole number rating received for each tool.

The data shown indicates that for each mathlet,
more than 50 percent of the participants gave the first
five tools a rating of 4 or 5 and the last five tools a
rating of 5, 6 or 7. Thus, more that 50 percent of the
participants found the overall ease of learning to use
the visuals ‘‘easier than average.’’

We were interested in how the manipulatives
interacted with students� personal educational sup-
port structure, and asked the participants to re-
spond to the question: ‘‘If you needed help [in
using the mathlet], where did it come from?’’ The
number that reported needing help consistently
decreased with increased exposure to the tools,
from 35 with the first mathlet to only 13 on the last
assignment. Most made comments such as ‘‘Gen-
erally, the visuals were self explanatory enough to
figure out on my own after messing around.’’ In
particular, most of those noted that only minor
help was needed which usually entailed an interac-
tion with a peer.

Table 2 illustrates the students� responses to the
question ‘‘How enjoyable was the visual to use?’’ The
participants were asked to give the first five tools a
whole number rating on a scale from 1 to 5, with 1
being ‘‘tedious,’’ 3 being ‘‘average for an MIT
problem set,’’ and 5 being ‘‘enjoyable.’’ Again, the
scale was revised to a 1 to 7 scale for the next five
tools, with 1 being ‘‘tedious,’’ 4 being ‘‘average for an

Table 1. Responses: What was the Overall Ease of Learning to use the Visual?

Mathlet Rating

1 2 3 4 5 6 7

Phase lines 1 8 13 21 16 n/a n/a

Complex roots 1 10 12 19 13 n/a n/a

Amp. & Phase: 1st order 2 9 16 17 11 n/a n/a

Damped vibrations 1 5 13 22 15 n/a n/a

Amp. & Phase: 2nd order 0 4 10 18 24 n/a n/a

Beats 2 2 6 12 18 9 5

Fourier coefficients 1 5 6 9 19 10 2

Convolution: accumulation 1 2 9 10 14 11 0

Convolution: flip and drag 1 2 8 10 16 10 0

Linear phase portraits 1 1 4 8 9 13 10
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MIT problem set,’’ and 7 being ‘‘enjoyable.’’ Fifty-
nine, 56, 55, 58, 56, 52, 51, 49, 49 and 49 responses
were received for the mathlets listed respectively. The
table shows these responses in terms of the quantity
of each whole number rating received for each tool.

The table shows that most of the mathlets ended
up with 50 percent or more of their ratings as ‘‘better
than an average problem set.’’ Beats and Convolu-
tion: Accumulation however did not, with only 27
percent and 24 percent of the ratings as ‘‘better than
average.’’ Student comments offered some insight
into these low ratings:

‘‘Beats was a simple visual. It was good, but not as

much fun to play with. (Not much happens in this

one besides when resonance is reached.)’’

‘‘The time spent on Convolution: Accumulation

caused it to be somewhat tedious. If I had been

able to understand it within a reasonable amount

of time I would have found it enjoyable.’’

‘‘I was very happy to understand what I did, but it

took me too long—It would have been just as help-

ful if there has been some further explanation of

the different graphs on the page.’’

‘‘Convolution Accumulation was just weird, and

not much explanation was presented in lecture to

help with it in terms of the topic.’’

The enjoyment ratings for the first five mathlets
were further examined by relating them to the
respondents� performance on the first semester exam,
the results presented in Table 3. It was decided to
only look at the first five mathlets as they provided a
consistent rating scale while avoiding the outlier
ratings from Beats and Convolution: Ahead. The 60
participants were sorted into three different groups,
16 that scored below 70 on the exam, 21 that scored

in the range of 70–85, and 23 that received a grade of
86 or above.

Notably, those in the lowest-scoring exam group
gave the highest ratings for each tool.While 63 percent
of the ratings in this groupwere a 4or 5 forPhaseLines,
only 52 percent of the ratings in the middle-scoring
group and only 36 percent of the ratings in the highest-
scoring exam group were a 4 or 5. For Complex Roots,
60 percent of the ratings in the lowest-scoring group
were a 4 or 5 while only 45 percent of the ratings in the
middle-scoring group and only 43 percent of the rat-
ings in the highest-scoring exam group were a 4 or 5.
Amplitude and Phase: First Order had 73 percent
‘‘above average’’ ratings in the lowest-scoring group,
58 percent in the middle-scoring group and only 48
percent in the highest-scoring exam group. Damped
Vibrations had 73 percent ‘‘above average’’ ratings in
the lowest-scoring group, 50 percent in the middle-
scoring group and 52 percent in the highest-scoring
exam group. Amplitude and Phase: Second Order had
67 percent ‘‘above average’’ ratings in the lowest-
scoring group, but only 52 percent in both the middle-
scoring and highest-scoring exam group.

Table 4 illustrates the student�s responses to the
question ‘‘How much did each visual help you to
understand the topic illustrated?’’ The participants
were asked to give the first five tools a whole number
rating on a scale from 1 to 5, with 1 being ‘‘a waste of
time’’ and 5 being ‘‘really made it clear.’’ Again, the
scale was revised to a 1 to 7 scale for the next five
tools, with 1 being ‘‘a waste of time’’ and 7 being
‘‘really made it clear.’’ Sixty, 56, 55, 58, 57, 51, 50, 48,
48 and 49 responses were received for the mathlets
listed respectively. The table shows these responses in
terms of the quantity of each whole number rating
received for each tool.

Table 2. Responses: How enjoyable was the visual to use?

Mathlet Rating

1 2 3 4 5 6 7

Phase lines 4 7 18 24 6 n/a n/a

Complex roots 6 6 17 22 5 n/a n/a

Amp. & Phase: 1st order 5 3 15 27 5 n/a n/a

Damped vibrations 4 5 16 22 11 n/a n/a

Amp. & Phase: 2nd order 2 4 19 21 10 n/a n/a

Beats 1 3 8 26 9 3 2

Fourier coefficients 2 2 4 16 10 9 8

Convolution: accumulation 4 5 8 20 9 2 1

Convolution: flip and drag 2 2 5 19 15 5 1

Linear phase portraits 1 2 3 9 13 15 6
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The data shown indicates that for each mathlet,
more than 60 percent of the participants gave the first
five tools a rating of 3, 4 or 5 and the last five tools a
rating of 4, 5, 6 or 7. Thus, more that 60 percent of
the participants found the tools ‘‘average or better’’
in aiding in their understanding. Specifically, in the
case of the Linear Phase Portraits, only 4 percent of
the participants found the mathlet ‘‘below average’’
in helping their understanding.

The understanding ratings for the first five
mathlets were also related to the respondents�
learning style, the results presented in Table 5. Stu-
dents who identified themselves with learning style A
prefer to see material first presented visually. Stu-
dents who identified themselves with learning style B
prefer to have material first presented computation-
ally. Students who identified themselves with learn-

ing style C prefer to have material first presented
theoretically.

Not unexpectedly, the first group reported higher
gains in understanding from using the mathlets than
did the other two groups. While 72 percent of the
ratings in this group were a 4 or 5 for Phase Lines,
only 29 percent of the ratings in group B and 33
percent of the ratings in the group C were a 4 or 5.
For Complex Roots, 62 percent of the ratings in
group A were a 4 or 5 while only 30 percent in group
B and 35 percent in group C were a 4 or 5. Amplitude
and Phase: First Order had 82 percent ‘‘above aver-
age’’ ratings in group A, 33 percent in group B and
only 29 percent in group C. Damped Vibrations had
72 percent ‘‘above average’’ ratings in group A, 48
percent in group B and 41 percent in group C.
Amplitude and Phase: Second Order had 71 percent

Table 3. Responses: How enjoyable was the visual to use?

Mathlet Rating

1 2 3 4 5

0–69 Phase lines 1 1 4 8 2

Complex roots 1 1 4 8 1

Amp. & Phase: 1st order 2 1 1 9 2

Damped vibrations 1 1 2 6 5

Amp. & Phase: 2nd order 1 0 3 4 4

70–85 Phase lines 1 1 8 9 2

Complex roots 3 1 7 7 2

Amp. & Phase: 1st order 0 1 7 9 2

Damped vibrations 0 2 8 7 3

Amp. & Phase: 2nd order 0 1 9 7 4

86–100 Phase lines 2 5 7 6 2

Complex roots 2 4 6 7 2

Amp. & Phase: 1st order 3 1 7 9 1

Damped vibrations 3 2 6 9 3

Amp. & Phase: 2nd order 1 3 7 10 2

Table 4. Responses: How much did each visual help you to understand the topic illustrated?

Mathlet Rating

1 2 3 4 5 6 7

Phase lines 6 9 19 19 7 n/a n/a

Complex roots 9 13 11 13 10 n/a n/a

Amp. & Phase: 1st order 4 6 19 24 2 n/a n/a

Damped vibrations 4 7 16 21 10 n/a n/a

Amp. & Phase: 2nd order 4 7 19 23 4 n/a n/a

Beats 1 2 12 13 14 6 3

Fourier coefficients 1 5 6 9 19 10 2

Convolution: accumulation 3 8 6 12 13 3 1

Convolution: flip and drag 1 1 8 11 14 9 2

Linear phase portraits 1 0 1 4 7 13 23
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‘‘above average’’ ratings in group A, but only 33
percent in group B and 44 percent in group C.

Further general comments on survey results. These
artistic special purpose tools were welcomed by stu-
dents much more readily than Matlab exercises. This
was true even when the Matlab exerices were medi-
ated by a special purpose graphical user interface. As
one student commented, ‘‘Sheer joy compared to
18.02 [Vector Calculus] Matlab assignments.’’

Students spent between 15 and 30 min on each
mathlet, and they felt that this was reasonable. A
student said, ‘‘I feel like the time was well-spent since
I learned a lot during the time.’’ Many students
commented that working on these computer manip-
ulatives was a welcome respite from the standard
paper and pencil homework. The instructors thought
the applets stimulated students to spend more time on
task. Several students remarked, ‘‘I genuinely enjoyed
using these visuals [as the mathlets were being called
at the time] and had no problem spending a lot of
time on them.’’ and ‘‘I spent more time on it than
what was just required to complete the assignment
because I found it interesting.’’

There is considerable discussion in the literature
about how simulations should be timed relative to
other treatments of the same material: see Lipson
(2006), for example. Homework requiring the use of
one of the mathlets fell due before it was lectured on
in class: the Linear Phase Portrait mathlet. Several
students made comments supporting the following
one: ‘‘These were great visuals, they were instru-
mental in helping me begin to understand how phase

portraits look and it helped me to understand the
following lectures.’’

The first implementations were presented as
platform specific executables, and students had to go
to an Athena cluster to use them. This was deeply
unpopular among the students, and we worked to
port the mathlets to Java so students could work on
them anywhere, but we feel that there was a real
advantage to bringing students to a common location
to work on these projects. It encouraged group work
and peer discussion. This became apparent from the
responses to questions about how the students got
help when they needed it: ‘‘Someone else in the
Athena cluster working on the same thing,’’ and
‘‘Friends working on the pset [problem set] in the
same cluster.’’

It is also interesting to note that various student
comments point towards the tools being successful in
dealing with the three teaching dilemmas presented
earlier. Here is a sample of these comments.

Facilitation of transfer

‘‘I found my biggest problem was that I didn�t
really understand what the graphs meant from

class/reading. Thus, playing with the graph and

having to use them really forced me to understand

them, and I would DEFINITELY recommend

continuing to use them. It�s funny that I didn�t even
realize how much they help until you are trying to

think about it later and you remember the graph.’’

Example versus Theory

‘‘I have always thought that the visuals where the

most fun part of the problem set. It is always satis-

Table 5. Responses: How much did each visual help you to understand the topic illustrated?

Mathlet Rating

1 2 3 4 5

Style A Phase lines 0 2 3 9 4

Complex roots 0 5 1 7 3

Amp. & Phase: 1st order 0 1 2 14 0

Damped vibrations 0 2 3 7 6

Amp. & Phase: 2nd order 0 2 3 11 1

Style B Phase lines 3 5 9 6 1

Complex roots 6 4 6 3 4

Amp. & Phase: 1st order 3 2 9 5 2

Damped vibrations 2 3 7 8 3

Amp. & Phase: 2nd order 2 5 9 5 3

Style C Phase lines 3 2 7 4 2

Complex roots 3 4 4 3 3

Amp. & Phase: 1st order 1 3 8 5 0

Damped vibrations 2 2 6 6 1

Amp. & Phase: 2nd order 2 0 7 7 0
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fying to see that the experimental value is not too

far off from the theoretical value’’

‘‘The concept of nth roots was abstract before the

visual, but was clear afterwards.’’

‘‘The best value I�ve gotten out of any of them was

the PhLines with its two graphs of the response

and f(y) in dy/dx = f(y). That solidified my intui-

tion of what made a stable point and how adding

or subtracting constants could be interpreted.’’

‘‘Helpful to see how constants affect graph, also

helpful to see how function behaves around the

facts that you�re trying to find—w/out visuals,

would only see the one pt calculated; w/visuals, see

entire curve, get used to their behavior.’’

Algorithm versus Concept

‘‘Sometimes just calculating with something is not

very effective in helping to understand it. I think

the visuals were very good, in general, in helping

me understand concepts and think about concepts

rather than just follow a standard method of solv-

ing a problem.’’

‘‘The damped vibes visual really helped my under-

standing of the concept of under damping and over

damping. The professor gave a great explanation in

lecture, but I was not really sure how the values for

different variables would make a difference. The

ability to manipulate these variables helped me to

see what damping relates to.’’

‘‘I had no idea what damping was. Playing around

with the damping visual I saw that without damp-

ing, the function just oscillated with the same

amplitude. If someone had told me this, it wouldn�t
have meant anything to me. I had to see it.’’

CONCLUSION

Summary of Results. We have employed an
integrated approach, involving educational assess-
ment from the outset, to the development of a suite of
iterative simulations supported by guided instruc-
tional support for use in a university level ordinary
differential equations course oriented towards engi-
neering majors.

The results of the assessment appear to show that
on the whole, students found the mathlets easy to use.
The students generally enjoyed using the tools, espe-
cially the lower-performing students, so it seems
possible that they served as a motivational tool for the
struggling student. Not unexpectedly, visual learners
found the tools most useful in aiding their under-
standing. The other learning types, however, still
found the mathlets to be more helpful than not in

assisting in their understanding of the relevant topics.
Various student comments support the notion that the
tools are useful in facilitating transfer as well as
dealing with the teaching dilemmas of example versus
theory and algorithm versus concept discussed earlier.

It is important to note that the mathlets are not
intended to replace textbooks or teachers. And of
course, they were not viewed as beneficial by every-
one as there were students that gave low ratings to the
tools and offered less than positive comments. Taken
as a whole however, the mathlets should be seen as a
valuable resource to be used alongside textbooks and
lectures in promoting retention and understanding in
the learning of differential equations.

The Promise of Technology. We will end with
some general observations about the use of computers
in teaching. These principles combine design principles
we had in mind at the outset with things we learned in
the course of this work. The earlier sections have
effectively laid out our response to these principles.

The promise of computers as an educational tool
has been trumpeted ever since the earliest days of the
computer revolution. The following is a recent
example (Bransford et al. (2000), p. 215):

Some scholars assert that simulations and computer-

based models are the most powerful resources for

the advancement and application of mathematics

and science since the origins of mathematical model-

ing during the Renaissance. The move from a static

model in an inert medium, like a drawing, to dy-

namic models in interactive media that provide visu-

alization and analytic tools is profoundly changing

the nature of inquiry in mathematics and science.

The rapid increase in power, flexibility, and
ubiquity of computers has increased this potential.
Just as important, however, is the insight we have
gained into the limitations and optimal use of tech-
nology. We list some observations gleaned from the
work outlined in this paper and many sources—for
example, Breslow (2006)—and indicate how they have
influenced the design and use of the dAIMPMathlets.3

(1) Technology is most effective when it meets a
need and fits naturally into the overall educa-
tional context. Absent these conditions it can be
a distraction.

(2) Use of technology involves a change in what is
taught, not just in how it is taught. For exam-

3This list is a modification of one developed by the first author in a

white paper presented to the MIT Task Force on the Undergrad-

uate Commons in December, 2005.
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ple, it is often possible to stress conceptual
points more if direct graphical representations
are easily available. Computational power
brings a range of otherwise inaccessible exam-
ples into play.

(3) Student use of technology needs to be highly
structured. Free discovery can work on a simu-
lation substrate but tends to be ineffective unless
it is done in a group setting.

(4) There is a high startup cost. Programming is
expensive. As a result, the cost of altering func-
tioning technological components can exert a
conservative force on curricular development.

(5) There is a price paid by both student and tea-
cher in learning to use the specific conventions
attached to the technology. This has been a
problem in integrating computational languages
such as Matlab into basic courses, and it can
discourage faculty from adopting even highly
focused teaching objects.

(6) Aesthetics matter. Students use a device more
willingly and profitably if it is attractive, simple,
intuitive, and convenient.

(7) Information technology offers new avenues for
enhancing communication. Email and websites
have become ubiquitous. Online tutors are
increasingly sophisticated at providing instanta-
neous feedback to students. Much can be
learned about student understanding from log-
ging various responses (via PRS to concept
quizzes, for example).
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