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Eigenvalue Stability Lab

Today we will use an interactive mathlet to understand the concept of eigenvalue stability.
Special thanks to Professor Haynes Miller and Jean-Michel Claus for their tireless efforts in
putting this mathlet together.

NAME

1. Open the Eigenvalue Stability Mathlet Open the applet by navigating to

http://math.mit.edu/~jmc/daimp/EigenvalueStability.html

in your favorite web browser. If nothing comes up, you may have to install/enable the
Java plugin and relaunch your browser. It should only take a minute.

2. Stability Boundary

(a) Select one of the available numerical integration schemes from the pull-down menu
in the lower left, and check the Formula box below. This formula displays the
amplification factor g as a function of z = λ∆t.

(b) Choose two (2) values of θ (θ1 and θ2) in the range [0, 2π). These angles define
two (2) points on the unit circle in the g-plane, g = eiθ1 and g = eiθ2 . In the space
below, calculate the corresponding values of z (z1 and z2).

θ1 = θ2 =

z1 = z2 =
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(c) Now grab the θ slider in the upper right and, in turn, set it to each value of θ you
selected above. As you change θ you see the yellow diamond in the main figure
trace out the corresponding values of z (i.e., the stability boundary). Check your
solution above by rolling over the yellow diamond in the main figure to see its
complex coordinates.

(d) Select a different numerical integration scheme. Drag the θ slider from θ = 0 to
θ = 2π and observe how the stability boundary is traced out in the z-plane in
real time.

3. Eigenvalue Stability

(a) Select either Forward Euler (RK1) or RK2 from the pull-down menu.

(b) Consider the numerical solution of the following parameterized initial value prob-
lem:
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, t ∈ [0, 10].

Find the eigenvalues as a function of the parameter a.

λ1 = λ2 =

(c) Let a = 2
√

5. For the method you selected in part (a), use the applet to determine
the maximum allowable time step ∆t which preserves eigenvalue stability.

∆t =

(d) Computational resource restrictions and sufficient accuracy requirements demand
that you use the time step ∆t = 0.1. Find the range of the parameter a for which
your numerical integration will be stable.

a ∈ [ , ]
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4. Pick A Scheme

For each of the following scenarios, suggest a numerical integration scheme from the
set

{Forward Euler (RK1); Midpoint; Backwards Euler; Trapezoidal; RK2}
and select the time step ∆t. Provide a brief justification for your selection.

(a) The governing equation is ut = f(u) = −u3 with initial condition u(0) = 1. We
need second-order accuracy, but evaluations of f(u) are very expensive.

Method: ∆t =

(b) There are competing populations of goldfish G(t) and sharks S(t). We have
dG/dt = G(1 − S) and dS/dt = (G − 1)S with G(0) = 1 and S(0) = 1. We
are interested only in the qualitative behavior of the solution (i.e. accuracy is not
paramount).

Method: ∆t =

(c) The governing equation is for a damped oscillator, θtt +θt +θ = 0 with initial con-
dition θ(0) = π/4. Matrix inverses are disallowed, even in componentwise form.
The output of interest is θ(1). We can only afford 50 matrix-vector multiplies.

Method: ∆t =


